Using a model similar to what meteorologists use to forecast weather and a computer simulation of the physics of evaporating ices, scientists have found evidence of snow and ice features on Pluto that, until now, had only been seen on Earth.
The bladed terrain of Pluto’s informally named Tartarus Dorsa region, imaged by NASA’s New Horizons spacecraft in July 2015.
Credits: NASA/JHUAPL/SwRI
Formed by erosion, the features, known as “penitentes,” are bowl-shaped depressions with blade-like spires around the edge that rise several hundreds of feet.
The research, led by John Moores of York University, Toronto, and done in collaboration with scientists at the Johns Hopkins University Applied Physics Laboratory and NASA Goddard Space Flight Center, indicates that these icy features may also exist on other planets where environmental conditions are similar.
The identification of these ridges in Pluto’s informally named Tartarus Dorsa area suggests that the presence of an atmosphere is necessary for the formation of penitentes – which Moores says would explain why they have not previously been seen on other airless icy satellites or dwarf planets. “But exotic differences in the environment give rise to features with very different scales,” he adds. “This test of our terrestrial models for penitentes suggests that we may find these features elsewhere in the solar system, and in other solar systems, where the conditions are right."
The research team, which also includes York’s Christina Smith, Anthony Toigo of APL and Scott Guzewich of Goddard Space Flight Center, compared its model to ridges on Pluto imaged by NASA’s New Horizons spacecraft in 2015. Pluto’s ridges are much larger – more than 1,600 feet (about 500 meters) tall and separated by two to three miles (about three to five kilometers) – than their Earthly counterparts.
“This gargantuan size is predicted by the same theory that explains the formation of these features on Earth,” says Moores. “In fact, we were able to match the size and separation, the direction of the ridges, as well as their age: three pieces of evidence that support our identification of these ridges as penitentes.”
Moores says though Pluto's environment is very different from Earth’s -- it is much colder, the air much thinner, the sun much dimmer and the snow and ice on the surface are made from methane and nitrogen instead of water -- the same laws of nature apply. He adds that both NASA and APL were instrumental in the collaboration that led to this new finding; both provided background information on Pluto's atmosphere using a model similar to what meteorologists use to forecast weather on Earth. This was one of the key ingredients in Moores’ own models of the penitentes, without which this discovery would not have been made.
The findings appear this week in the journal Nature.
NASA’s New Discovery Missions On Jan. 4, NASA announced the selection of two missions to explore previously unexplored asteroids. The first mission, called Lucy, will study asteroids, known as Trojan asteroids, trapped by Jupiter’s gravity. The Psyche mission will explore a very large and rare object in the solar system’s asteroid belt that’s made of metal, and scientists believe might be the exposed core of a planet that lost its rocky outer layers from a series of violent collisions. Lucy is targeted for launch in 2021 and Psyche in 2023. Both missions have the potential to open new windows on one of the earliest eras in the history of our solar system – a time less than 10 million years after the birth of our sun.
Impact craters expose the subsurface materials on the steep slopes of Mars. However, these slopes often experience rockfalls and debris avalanches that keep the surface clean of dust, revealing a variety of hues, like in this enhanced-color image from NASA's Mars Reconnaissance Orbiter, representing different rock types. The bright reddish material at the top of the crater rim is from a coating of the Martian dust.
The long streamers of material are from downslope movements. Also revealed in this slope are a variety of bedrock textures, with a mix of layered and jumbled deposits. This sample is typical of the Martian highlands, with lava flows and water-lain materials depositing layers, then broken up and jumbled by many impact events.
This image was acquired by the High Resolution Imaging Science Experiment (HiRISE) camera on Feb. 28, 2011 at 15:24 local Mars time. It is a stereo pair with image ESP_021454_1550.
The University of Arizona, Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Reconnaissance Orbiter Project for NASA's Science Mission Directorate, Washington.
Mantra of Avalokiteshvara When we sing along with the chant, our entire body, heart and mind gradually come into deep contemplation. Our innate wisdom is revealed, so that we can joyfully abide by the Six Paramittas of keeping the precepts, tolerance, diligence, charity, contemplation and wisdom. We can eliminate all the poisons of greed, anger, delusion, arrogance, doubts and evil thoughts, And open the Path of the Bodhisathvas by closing the Six Realms of Heaven, Humans, Asuras, Animals, Hungry Ghosts and Hell. The merits of your chanting the mantra will benefit not only yourself, but all living creatures, including small animals and insects, so that their souls will become tranquil and joyful. You are cordially invited to chant with us! Please don't forget to dedicate the merits of your chanting and listening to all the living creatures of the world. Thuk Je Che Tíbet.
Astronomers using NASA’s Chandra X-ray Observatory are uncovering secrets of some of the most mysterious and exciting X-ray spewing objects in the universe. Here are two latest findings presented at the 229th American Astronomical Society meeting in Grapevine, Texas this week.
Astronomers have discovered a cosmic one-two punch unlike any ever seen before. Two of the most powerful phenomena in the Universe, a supermassive black hole, and the collision of giant galaxy clusters, have combined to create a stupendous cosmic particle accelerator.
By combining data from Chandra, the Giant Metrewave Radio Telescope (GMRT) in India, the NSF's Karl G. Jansky Very Large Array, and other telescopes, researchers have found out what happens when matter ejected by a giant black hole is swept up in the merger of two enormous galaxy clusters.
Deepest X-ray Image Ever Reveals Black Hole Treasure Trove
An unparalleled image from Chandra gives astronomers the best look yet at the growth of black holes over billions of years beginning soon after the Big Bang. This is the deepest X-ray image ever obtained, collected with about 7 million seconds, or eleven and a half weeks, of Chandra observing time.
The image comes from what is known as the Chandra Deep Field-South. The central region of the image contains the highest concentration of supermassive black holes ever seen, equivalent to about 5,000 objects that would fit into the area of the full Moon and about a billion over the entire sky.
This graphic shows all the cosmic light sources in the sky that are included in the NASA/IPAC Extragalactic Database (NED), an online repository containing information on over 100 million galaxies.
A team of researchers has compiled a special catalog to help astronomers figure out the true distances to tens of thousands of galaxies beyond our own Milky Way.
The catalog, called NED-D, is a critical resource, not only for studying these galaxies, but also for determining the distances to billions of other galaxies strewn throughout the universe. As the catalog continues to grow, astronomers can increasingly rely on it for ever-greater precision in calculating both how big the universe is and how fast it is expanding. NED-D is part of the NASA/IPAC Extragalactic Database (NED), an online repository containing information on more than 100 million galaxies.
"We're thrilled to present this catalog of distances to galaxies as a valuable resource to the astronomical community," said Ian Steer, NED team member, curator of NED-D, and lead author of a new report about the database appearing in The Astronomical Journal. "Learning a cosmic object's distance is key to understanding its properties."
Steer and colleagues presented the paper this week at the 229th meeting of the American Astronomical Society in Grapevine, Texas.
Since other galaxies are extremely far away, there's no tape measure long enough to measure their distances from us. Instead, astronomers rely on extremely bright objects, such as Type La supernovae and pulsating stars called Cepheids variables, as indicators of distance. To calculate how far away a distant galaxy is, scientists use known mathematical relationships between distance and other properties of objects, such as their total emitted energy. More objects useful for these calculations have emerged in recent years. NED-D has revealed that there are now more than six dozen different indicators used to estimate such distances.
NED-D began as a small database pulled together in 2005 by Steer. He began serving at NED the following year to build out the database, poring over the scores of astronomical studies posted online daily, identifying newly calculated distance estimates as well as fresh analyses of older data.
From its humble origins a little over a decade ago, NED-D now hosts upwards of 166,000 distance estimates for more than 77,000 galaxies, along with estimates for some ultra-distant supernovae and energetic gamma ray bursts. To date, NED-D has been cited by researchers in hundreds of studies.
Besides providing a one-stop tabulation of the ever-increasing distance estimates published in the astronomical literature, NED-D -- as well as the broader NED -- can serve as "discovery engines." By pooling tremendous amounts of searchable data, the information repositories can allow scientists to identify novel, exotic phenomena that otherwise would get lost in a deluge of observations. An example is the discovery of "super luminous" spiral galaxies by NED team members, reported last year, which were identified among nearly a million individual galaxies in the NED database.
"NED and its associated databases, including NED-D, are in the process of transforming from data look-up services to legitimate discovery engines for science," said Steer. "Using NED today, astronomers can sift through mountains of 'big data' and discover additional new and amazing perspectives on our universe."
NASA's Jet Propulsion Laboratory, Pasadena, California, manages the NASA/IPAC Extragalactic Database (NED) for NASA's Science Mission Directorate, Astrophysics Division, Washington. NED operations are conducted at the Infrared Processing and Analysis Center (IPAC) at Caltech in Pasadena. Caltech manages JPL for NASA.
NASA’s Lucy mission, which will launch in 2021 for the first reconnaissance of the Trojans, a population of primitive asteroids orbiting in tandem with Jupiter. In this artist’s concept (not to scale), the Lucy spacecraft is flying by Eurybates, one of the six diverse and scientifically important Trojans to be studied.
Credits: Southwest Research Institute
NASA has selected a mission that will perform the first reconnaissance of the Trojans, a population of primitive asteroids orbiting in tandem with Jupiter. The Lucy mission will launch in 2021 to study six of these exciting worlds.
“This is a unique opportunity,” said Dr. Harold F. Levison, Lucy principal investigator from Southwest Research Institute (SwRI) in Boulder, Colorado. “Because the Trojans are remnants of the primordial material that formed the outer planets, they hold vital clues to deciphering the history of the solar system. Lucy, like the human fossil for which it is named, will revolutionize the understanding of our origins.”
The Lucy spacecraft and a remote-sensing instrument suite will study the geology, surface composition, and bulk physical properties of these bodies at close range. The payload includes three complementary imaging and mapping instruments, including a color imaging and infrared mapping spectrometer from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, a high-resolution visible imager from the Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, and a thermal infrared spectrometer from Arizona State University, Tempe. In addition, Lucy will perform radio science investigations using its telecommunications system to determine the masses and densities of the Trojan targets.
“Understanding the causes of the differences between the Trojans will provide unique and critical knowledge of planetary origins, the source of volatiles and organics on the terrestrial planets, and the evolution of the planetary system as a whole,” said Dr. Catherine Olkin, the mission’s deputy principal investigator from SwRI.
“The Lucy mission is one of those rare moments where a single mission can have a major impact on our understanding of such fundamental questions,” added Dr. Keith Noll, Lucy project scientist from Goddard.
The mission will launch in October 2021 and fly by its targets between 2025 and 2033. In all, Lucy will study six Trojans and one main belt asteroid.
Southwest Research Institute (SwRI) in Boulder, Colorado is the principal investigator institution and will lead the science investigation. NASA’s Goddard Space Flight Center, Greenbelt, Maryland will provide overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space Systems in Denver, Colorado will build the spacecraft.
Discovery Program class missions like these are relatively low-cost, their development capped at about $450 million. They are managed for NASA’s Planetary Science Division by the Planetary Missions Program Office at Marshall Space Flight Center in Huntsville, Alabama. The missions are designed and led by a principal investigator, who assembles a team of scientists and engineers, to address key science questions about the solar system.
On Monday, Aug. 21, 2017, millions in the U.S. will have their eyes to the sky as they witness a total solar eclipse. The moon’s shadow will race across the United States, from Oregon to South Carolina. The path of this shadow, also known as the path of totality, is where observers will see the moon completely cover the sun. And thanks to elevation data of the moon from NASA’s Lunar Reconnaissance Orbiter, or LRO, coupled with detailed NASA topography data of Earth, we have the most accurate maps of the path of totality for any eclipse to date.
By bringing in a variety of NASA data sets, visualizer Ernie Wright has created a new and more accurate representation of the eclipse.
Eclipse maps have long been used to plot the predicted path of the moon’s shadow as it crosses the face of Earth. Friedrich Wilhelm Bessel and William Chauvenet, two prominent 19th century astronomers and mathematicians, developed the math still used to make eclipse maps — long before computers and the precise astronomical data gathered during the Space Age.
Traditionally, eclipse calculations assume that all observers are at sea level and that the moon is a smooth sphere that is perfectly symmetrical around its center of mass. The calculations do not take into account different elevations on Earth and the moon’s cratered, uneven surface.
A map of the United States showing the path of totality for the August 21, 2017 total solar eclipse.
Credits: NASA/Goddard/SVS/Ernie Wright
For slightly more accurate maps, people use elevation tables and plots of the lunar limb — the edge of the visible surface of the moon as seen from Earth. Until recently, astronomers have used the limb profiles published in 1963 by astronomer Chester Burleigh Watts to create eclipse maps of the moon’s path of totality. To produce his profiles, Watts designed a machine that traced 700 photographs covering every angle of the moon visible from Earth.
However, eclipse calculations have gained even greater accuracy based on topography data from LRO observations.
A new look at an ancient phenomenon
Using LRO elevation maps, NASA visualizer Ernie Wright at Goddard Space Flight Center in Greenbelt, Maryland, created a continuously varying lunar limb profile as the moon’s shadow passes over the United States as it will during the upcoming eclipse. The mountains and valleys along the edge of the moon’s disk affect the timing and duration of totality by several seconds. Wright also used several NASA data sets to provide an elevation map of Earth so that eclipse observer locations were depicted at their true altitude.
The resulting visualizations show something never seen before: the true, time-varying shape of the moon’s shadow, with the effects of both an accurate lunar limb and the Earth’s terrain.
“We couldn’t have done visualizations like this even 10 years ago,” Wright said. “This is a confluence of increasing computing power and new datasets from remote sensing platforms like LRO and the Shuttle Radar Topography Mission.”
The lunar umbra is the part of the moon’s shadow where the entire sun is blocked by the moon. On an eclipse map, this tells you where to stand in order to experience totality. For centuries, eclipse maps have depicted the shape of the moon’s umbra, or darkest part of its shadow, as a smooth ellipse.
As evidenced in the new visualizations, the umbral shape is dramatically altered by both the rugged lunar terrain and the elevations of observers on Earth.
“We’ve known for a while now about the effects of the lunar limb and the elevation of observers on the Earth, but this is the first time we’ve really seen it in this way,” Wright said. “I think it’ll change how people think about mapping eclipses.”
This map shows a detailed image of the Moon's umbral shadow as it passes over the United States during the August 21, 2017 total solar eclipse.
Credits: NASA/Goddard/SVS/Ernie Wright
The true shape of the umbra is more like an irregular polygon with slightly curved edges. Each edge corresponds to a single valley on the lunar limb, the last spot on the limb that lets sunlight through. As these edges pass over mountain ranges, they are scalloped by the peaks and valleys of the landscape. The moon’s umbra will cross the Cascades, Rockies and Appalachians during the 2017 eclipse.
“Solar and lunar eclipses provide an excellent opportunity to talk about the moon, since without the moon there would be no eclipses,” said Noah Petro, deputy project scientist for LRO. “Because we know the shape of the moon better than any other planetary body, thanks to LRO, we can now accurately predict the shape of the shadow as it falls on the face of the Earth. In this way, LRO data sheds new light on our predictions for the upcoming eclipse.”
The total solar eclipse on Monday, Aug. 21, 2017 will cross the continental United States beginning in Oregon and ending in South Carolina. The last time a total solar eclipse spanned the United States was in 1918, when the path of totality entered through the southwest corner of Washington and passed over Denver, Colorado, Jackson, Mississippi, and Orlando, Florida before exiting the country at the Atlantic coast of Florida.
More information on the numerous NASA data sets incorporated into this visualization: Blue Marble Next Generation was used for color of the land. Shuttle Radar Topography Mission was used for Earth elevations. This is a global elevation map based on a radar instrument flown on Space Shuttle Endeavour during STS-99 in February 2000. Lunar Digital Elevation Model and Selene/LRO Digital Elevation Model were used for the lunar limb. NASA's Jet Propulsion Laboratory's DE421 provided Earth, moon, and sun positions.
El juego de mesa estratégico weíqí (围棋, también conocido como go) se originó en Chinahace más de 4000 años y se introdujo en la península coreana y en Japón hace más de mil años, formando una parte tradicional del intercambio cultural entre los tres países.
Artículo de Sun HongweiInstituto Confucio de la Universitat de València 孙洪威
El juego de mesa estratégico weíqí (围棋, también conocido como go) se originó en China y cuenta con una larga historia. El yì (弈), que se refería antiguamente al actual juego del weiqi, estaba considerado como una de las Cuatro Artes Tradicionales de los eruditos chinos, junto con el qín (琴, antiguo instrumento de cuerda), el shū (书, lacaligrafía) y la huà (画, pintura). El go fue inventado hace más de 4000 años y se introdujo en la península coreana –donde se le conoce como baduk– y en Japón –llamado allí igo– hace más de mil años, donde se hizo popular enseguida entre los nobles y la corte. En la actualidad, se celebran cada año numerosos torneos de weiqi de distintos niveles entre China, Japón y Corea, formando una parte tradicional del intercambio cultural entre los tres países. Con el tiempo, y teniendo en cuenta las reglas de ataque y defensa, su nombre cambió al de wéiqí, que se traduce literalmente como el “juego de tablero de envolvimiento”.
El tablero y las fichas
El tablero de juego, en su forma cuadrada, está compuesto por una cuadrícula de 19 líneas verticales por 19 horizontales con 361 intersecciones, constituyendo un dibujo geométrico y simétrico. De hecho, entre las teorías que intentan justificar el origen del tablero, encontramos una que dice que se trata de una imitación a los 360 días celestes, más las estrellas, que serían los puntos marcados en la superficie, y el espacio central llamado tiānyuán (天元 o el origen del cielo). Otra teoría reside en la apariencia cuadrada del tablero, símbolo de la tierra, de manera que el weiqi, tanto en lo referente al tablero como a las fichas redondas, corresponde a la versión tradicional sobre el mundo, donde la tierra es cuadrada y el cielo redondo. Asimismo, el color blanco y negro de las fichas –llamadas piedras- representan el día y la noche.
En consonancia con la cultura idiosincrásica que manifiesta el weiqi, es imprescindible contar con un juego hecho de los mejores materiales. Las piedras más utilizadas para fabricar el weiqi provienen de la provincia de Yunnan y se llaman yúnzǐ (云子), cuya característica principal consiste en su delicado brillo y su tacto, ni frágil ni resbaladizo. Al mismo tiempo las piedras negras (181 en total) y blancas (180) tienen cada una cualidades individuales únicas y suelen ser de forma convexa. Las blancas, que se hacen de color blanco puro, tienen el resplandor típico del jade, mientras que las negras son opacas y oscuras. El tablero más apreciado es el de madera de torreya que, al ser una conífera, tiene vetas claras amarillas y exhala un aroma especial. El sonido que se produce al colocar las piedras en el tablero es suave y agradable. Otros materiales ampliamente utilizados para la elaboración de los tableros son el cinamomo, el ginkgo biloba y la picea.
Las reglas del juego
Las reglas básicas para jugar al weiqi son sencillas y consisten en que los dos jugadores colocan alternativamente las piedras negras y blancas sobre las intersecciones libres en vez de en las casillas vacías. El orden siempre empieza por las fichas negras –por eso tienen una más que las blancas- y cada jugada solamente permite colocar una piedra. El objetivo final del juego es controlar una porción más grande del tablero que el oponente. Cuanto mayor sea esa porción, más probabilidades tiene de ganar la partida. Las intersecciones del tablero en chino se llaman mù (目) y las fichas negras no ganan una partida hasta conseguir un total de 185 intersecciones, mientras que las blancas lo hacen capturando 177 intersecciones, como compensación por haber empezado la partida después de las negras. Asimismo, no está permitido hacer una jugada ocupando una libertad en el interior de una formación enemiga (suicidio), a no ser que esta jugada capture piedras del oponente. Por último, se retiran las piedras muertas de cada bando.
Las fichas del weiqi se llaman “piedras” y son blancas y negras.
Antes de ubicar las piedras, el tablero se queda vacío por completo. Teniendo en cuenta que no existe una jerarquía ni funciones distintas entre las fichas, se pueden colocar libremente en la cuadrícula dando rienda suelta a la imaginación y a la creatividad de cada jugador. Sin embargo, el único objetivo es conseguir la mayor porción del tablero usando las propias piedras mediante planes estratégicos a largo plazo. Al mismo tiempo, una partida de weiqi presupone siempre cambios constantes de situación y búsqueda de alternativas complejas. Es por ello, que por el momento no existe ningún ordenador capaz de jugar al weiqi, al contrario de lo que sucede con otros juegos como el ajedrez.
Tres etapas fundamentales del juego
Las tres etapas más importantes del weiqi son: el inicio de la partida, la captura y suicidio, y la limpieza antes del final, donde se retiran las piezas muertas.
Un dicho popular sobre la estrategia del juego que dice “las esquinas del tablero valen oro; los cuatro lados, plata; y el centro, nada”, lo que nos indica que al iniciar la partida es recomendable ocupar primero las esquinas y después los lados, para finalizar en el centro. Debido a la importancia trascendental que tienen las esquinas, los jugadores siempre intentan colocar una gran cantidad de piedras en los huecos libres de esas zonas sin arriesgarse a ocupar el centro. Después de estos movimientos, se entra ya en la etapa de captura y suicidio, en la que los jugadores luchan entre sí de manera ofensiva y defensiva. La limpieza antes del final consiste en hacer algún pequeño arreglo o mejora tanto en sus propios territorios como en las fronteras para acabar la batalla.
Campeonato juvenil de weiqi en China
La sabiduría que demuestra el weiqi
El milenario juego del weiqi es un patrimonio bien conservado en la cultura tradicional de la etnia Han, que precisamente refleja la aspiración de la sabiduría del pueblo chino.
En realidad el weiqi no es sólo un simple juego, sino que también está considerado como una elegante competición deportiva, pues integra en sí mismo conocimientos científicos, artísticos y deportivos. Jugar al weiqi con frecuencia favorece el desarrollo de la inteligencia humana en aspectos tales como en la capacidad calculadora, en la creatividad, en la rapidez de pensamiento y en la sindéresis, asimismo mejorará el nivel de observación y autocontrol. De hecho este juego tradicional chino ha supervivido durante miles de años y hoy en día gana cada vez más popularidad en el resto del mundo como una actividad cultural y competitiva de gran importancia.
Distintas posiciones estratégicas durante una partida de weiqi.
En la antigüedad, el weiqi era una herramienta fundamental para formar las habilidades y facultades militares de los soldados. Con referencia al artículo Prosa de Weiqi, escrito por Ma Rong (79-166) de la dinastía Han del Este (25 a.C.-220 d.C.), el tablero fue concebido como un campo de batalla y las fichas como huestes. En aquel entonces muchos estrategas prestigiosos, tales como Cao Cao y Sun Quan, eran a su vez célebres jugadores de weiqi.
En la actualidad, este juego ya no está asociado a las batallas ni a las invasiones, al contrario la gente prefiere percibirlo como un pasatiempo popular, que por un lado ayuda a desarrollar la inteligencia y cultivar la moralidad, y por el otro sirve de entretenimiento. Un partido de weiqi destaca por su complejidad estratégica, lo que requiere de meditación, inteligencia y juicio. Hay un dicho chino que dice que “la vida pasa como un partido de weiqi”, reflejando el sentido de que la estrategia aplicada en este juego siempre refleja la actitud sobre la vida que toman cada uno de los jugadores.
Publicado originalmente en: Revista Instituto Confucio.Número 9.Volumen VI. Noviembre de 2011.
For the first time since the twin Voyager spacecraft missions in 1979, scientists have produced far-infrared maps of Jupiter using NASA’s Stratospheric Observatory for Infrared Astronomy, SOFIA. These maps were created from the researchers’ studies of the circulation of gases within the gas giant planet’s atmosphere.
Infrared observations provide details not possible at other wavelengths. When gas planets like Jupiter are studied with visible light, they can only see the light reflecting from the top of the gas clouds that make up the atmosphere. Using infrared light allows scientists to see past the clouds and into the deep layers of the atmosphere, providing a three-dimensional view of the planet and the ability to study how gasses circulate within the atmosphere.
Leigh N. Fletcher from the University of Leicester, England, led a team of researchers that used the SOFIA telescope and data from the Faint Object infraRed Camera for the SOFIA Telescope, known as FORCAST, to make these observations. Fletcher’s team was looking for the two types of molecular hydrogen, called “para” and “ortho” – differentiated by whether their protons have aligned or opposite spins. The fraction of hydrogen in the “para” flavor is a good indicator for gasses upwelling from deep within the planet’s atmosphere. This interaction of gas molecules was observed at infrared wavelengths between 17 and 37 microns, a spectrum range that is largely inaccessible to ground-based telescopes.
Jupiter was observed with SOFIA by stepping the FORCAST spectroscopic slit across the planet. The left-hand panel shows a visible-light image of Jupiter with blue rectangles illustrating the orientation and size of the FORCAST slit. For each pointing of the telescope, the spectrum was made at every position along the slit. The two right-hand panels show SOFIA images of Jupiter made from combining the wavelengths in two of the slits. Jupiter's Great Red Spot is evident and has rotated between the different observations. The total information content is full images of Jupiter at all wavelengths between 17.9 and 32.9 microns, or equivalently, spectra at each position.
Credits: Visible light image: Anthony Wesley. FORCAST slitscan: NASA/SOFIA/Fletcher et al.
Much of the current understanding of Jupiter’s circulation patterns are based on results from space-based missions of the past, including the Voyager mission, Galileo mission (1989–2003), and the Cassini spacecraft, which flew past Jupiter in 2000. SOFIA’s airborne location, above more than 99 percent of Earth’s infrared-blocking water vapor, combined with the powerful FORCAST instrument, provides one of the only current facilities capable of studying Jupiter’s overall atmospheric circulation. These new SOFIA observations allow comparisons of how Jupiter’s atmospheric circulation has changed over time.
Images from SOFIA reveal several interesting features. The cold, red spot in the southern hemisphere indicates an upwelling of gas that is cooling the atmosphere. The belt zone structure near the equator shows that the equator is cold and surrounded by warm belts of sinking gas. The atmospheric heating from Jovian aurora in the northern reaches of the planet indicates the presence of methane and ethane in the stratosphere. SOFIA’s unique observations of the comparison between ortho and para hydrogen reveal a gradual trend from the equatorial to polar regions.
Based upon earlier observations, Fletcher’s research team assumed that Jupiter should have equilibrium everywhere in its atmosphere, but they found that at low latitudes in the tropics there is significant mixing. Aureoles may be affecting this mixing, but further observations are necessary to better understand the processes over time. The results from the Fletcher team’s observations were recently published in the journal Icarus.
“These results demonstrate that from Earth we can now capture a similar quality of spatially resolved observations as we can obtain from space missions like Voyager,” said Fletcher. “These SOFIA observations will fill the gap in the wavelength coverage of current and future space-based observatories and provide spatial and temporal context for them.”
SOFIA is a Boeing 747SP jetliner modified to carry a 100-inch diameter telescope. It is a joint project of NASA and the German Aerospace Center, DLR. NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program along with science and mission operations in cooperation with the Universities Space Research Association headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart. The aircraft is based at NASA Armstrong Flight Research Center's Hangar 703, in Palmdale, California.
Senegal, Nigeria, Uganda y Camerún son los países desde donde nos llegan los temas que hoy os proponemos.
Nneka regresa con un tema lleno de amor. ROCKSTONE
Nos acaba de llegar el vídeo del tema African Mousso del dúo senegalés Daara J Family. Este grupo comenzó siendo un trío. Sus miembros actuales, N’Dango D y Faada Freddy siguen fieles a la idea inicial del conjunto: la mezcla de ritmos originales africanos con otros más occidentales como es el hip hop o el reggae. Les gusta cantar en inglés, francés, castellano y wolof.
El tema que tenemos hoy pertenece al último trabajo de los artistas, titulado Foundation. Un álbum del que ya hemos escuchado otros temas y que marca el inicio de la madurez del grupo que comenzó su andadura en 1990, siempre arriesgando e innovando. Este LP enlaza perfectamente con el nombre del grupo -escuela, en wolof-, una escuela en la que cada uno se construye a sí mismo. En él se exalta el respeto a las tradiciones, el amor a la tierra y a la identidad africana y la autoestima, sin olvidar la apertura al mundo y a todo lo positivo que nos llega.
El vídeo está lleno de optimismo, color y alegría, con él comenzamos la primera selección de este nuevo año a ver si se nos contagia un poco de tanto optimismo.
Hacía mucho que Nneka no nos daba motivos para sacarla en estas páginas, pero un día antes de que terminase 2016 presentó el vídeo de su último sencillo: Nothing. En él, la artista nacida en Nigeria y residente en la actualidad en Alemania, vuelve a sacar todo el poder de su voz y toda la profundidad de sus composiciones.
Un vídeo en blanco y negro realza la melancolía que transmite este tema que está cargado de amor, algo también muy necesario para encarar el nuevo año.
Una vez que el nigeriano Pantoraking consiguió hacerse un hueco en el panorama musical se decantó por un estilo que era mezcla de reggae y dancehall con el que ha conseguido muchos éxitos y se ha afirmado como uno de los artistas más pujantes de la escena africana.
Sin embargo, últimamente parece haberse convertido en el abanderado de un movimiento que no sabemos muy bien como definir y que podríamos etiquetar como dance-gospel. Se trata de un estilo lleno de reflexiones religiosas, gracias a dios por todos los dones y riquezas recibidas en esta vida y al mismo tiempo muy comercial, algo que vende muy bien entre los adeptos del neopentecostalismo africano.
Todo lo dicho queda muy bien retratado en el último tema del compositor y cantante, que lleva por título God over everyting. El vídeo deja también muy claras las intenciones del artista.
Eddy Kenzo también ha presentado un nuevo sencillo al inicio del nuevo año, se trata del tema Obasinze que interpreta junto al pionero del llamado Luga Flow, un movimiento, principalmente de raperos ugandeses, que desprecia el inglés como lengua colonial y utiliza el luganda como idioma para rapear, y que no es otro que Gravity Omutujju.
El vídeo que lo acompaña está lleno de color y, como no podía ser de otra forma tratándose de una composición del antiguo niño de la calle, mucho baile.
Terminamos con X-Maleya, un trío originario de Yaundé. Cuando empezó su carrera musical en 2008, sus componentes pusieron la X delante del nombre como incógnita sobre el futuro que les esperaba. Después de tantos años sobre el escenario las dudas se han despejado definitivamente: Auguste Lamer, Haissam Zaiter y Roger Samnig siguen juntos y triunfando. Ellos también han querido comenzar el 2017 con algo nuevo, un tema con el que dan gracias y que, evidentemente, se titula Merci.
Una vez más el trío mezcla sonidos tradicionales bantúes con otros ritmos más occidentales, pero como siempre, con un trasfondo de amor, una de sus características, otro de los componentes que más necesitamos para encarar el nuevo año.